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Probing the Kondo screening cloud via tunneling-current conductance fluctuations
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We show that conductance fluctuations or noise in the conductance of a tunneling current into an interacting
electron system is dominated by density-density and (or) spin-spin correlations. This allows one to probe
two-particle properties (susceptibilities) and collective excitations by standard experimental tunneling methods.
We demonstrate this theoretically, using a many-body calculation for the single-adatom Kondo problem. An
example of the two-particle correlations around a single magnetic adatom in the Kondo regime, as would be
viewed by a scanning tunneling microscope, is given. The spatial dependence of the local spin and charge
correlations of the substrate exhibits a clear signature of the Kondo screening cloud.
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Noise spectroscopy has become a valuable tool to study
electronic systems. The intrinsic noise, i.e., the fluctuations
of a signal due to inherent uncertainties generated by an elec-
tronic system is not a simple set of random uncorrelated
events but contains fundamental information about electron-
electron correlations, that is not reflected in a time-averaged
measurement. A famous application was the experimental
verification of the fractionally charged quasiparticles in the
quantum-Hall regime, through shot-noise measurements.
The use of current-current correlations, such as shot-noise or
Johnson-Nyquist (thermal) noise, has a long history and has
been a prevalent topic of both experimental and theoretical
work, along with related topics, such as conductance fluctua-
tions of mesoscopic wires, mostly studying the effects of
disorder.>

In this Brief Report, we show that in the weak local-
tunneling limit, the conductance fluctuations of a tunneling
current into an interacting system are determined by local
density-density and spin-spin correlations. While on a mac-
roscopic scale two-particle properties, such as the compress-
ibility or magnetic susceptibility, are easily measured, few (if
any) techniques exist to extract these quantities locally at a
microscopic scale. For instance, almost 50 years after the
discovery and explanation of the Kondo effect, the prediction
of spatially extended spin correlations around a magnetic
impurity—the Kondo cloud—has never been observed
experimentally. This screening cloud and the associated
screening length &g, has attracted a lot of attention.
Renormalization-group analysis®’ confirms the presence of
such a scale but experiments to detect the screening cloud
through the Knight shift® have not done so. Although these
results are somewhat controversial, other proposed experi-
ments have been difficult or impossible to realize.

Here, we propose to use a scanning tunneling microscope
(STM) to measure the spatial dependence of the conductance
fluctuations and to extract information on the spin-spin cor-
relations. We demonstrate that a clear signature of the Kondo
screening cloud can indeed be obtained via a single local
probe, which we expect to stimulate future experimental
work along these lines.

The atomic spatial resolution of a scanning tunneling mi-
croscope makes it a natural choice to study systems on a
microscopic scale. The combination of an STM and noise
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spectroscopy has already been used to develop the field of
electron-spin-resonance scanning tunneling microscopy.’
With a similar experimental setup in mind, the total
Hamiltonian is taken to be H=Hgqry+Hgyp,+ Hyn, Where Hyy,
is the general interacting Hamiltonian of the substrate and
Hygrn=2 o€ pu—eV)ay ay, is the Hamiltonian of the
STM. As usual, we assume that the STM is a noninteracting
Fermi gas with an energy-independent density of states near
the Fermi energy eg=pu. The chemical potential of the STM
is displaced by eV, where the charge of the electron is —e and
V is the applied voltage. The tunneling is determined by
Hyn=Zyx ol Tay by o+H.c.], with tunneling amplitude 7,
which within the local tunneling approximation is taken to be
independent of momenta k,k’. The operators blt,o and by,
are the mode creation and annihilation operators for the sub-
strate. The current operator is defined as 1 :—e&,NSTM, where
ICJSTM=ZkUa£UakU is the particle number operator for the
STM. Assuming [Ngpy, Hypy]=0, by Heisenberg’s equation
of motion, I=ie[Ngpy, Hyn] (With i=1).

Evaluating the commutator within the tunneling Hamil-
tonian formalism leads to the common expression for the
current operator I=ie=,3y /[Ta) by ,~H.c.]'® The non-
equilibrium expectation value of 1, which determines the ex-
perimentally measured current, is obtained within linear re-
sponse (LR) by treating the tunneling as the perturbation and
assuming the STM and substrate are separately in thermody-
namic equilibrium. If the system is decoupled in the infinite
past, the current operator within LR is given as

iLR(t):i+if dt,[Htun(tl)’i(l)]’ (1)

where  O(f)=eH0'Qe~iHo!
expectation value of Eq.

and HO =HSTM + Hsub' The
(1) with respect to H,

(iLR)H(]:Tr iLRe‘BHO/ Tr e PHo, gives the current to leading
order in the tunneling amplitude 7. The linear conductance,
in this approximation, is given by GLR=’9V<jLR>H0- We define
such that
<éLR>HO=0V<fLR)HO. With this operator expression for the

a conductance operator by GLRzﬁvaR,
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conductance, the fluctuations or specifically the spectral den-
sity of the conductance, is defined as

S(r,w) = ‘J d1e"({5Gy g(r,1), G p(r, 0OPu, (2

where 8G;r=G;r—(Gr). A lengthy calculation assuming
rotational invariance leads to the following result for the
low-temperature zero-frequency limit of Eq. (2):

S(r,0=0) = 74T [ psru(eV) PxD(r, 0 = 0)
+ 3277 T* P’ ps (e V) X (r, 0 = 0)

(3)

with PSTMzzanTM» P =(P£TM_P§TM)/ Pstv» and
)(gub(r 1) = (& (r,t) oi(r, O))H (4a)
Xeu(Ts1) = ($¥(r,0)5(r,0)p_, . (4b)

where x and x, are the local charge and spin suscepti-
bilities, respectively, with the density and spin-density opera-
tors of the substrates 7 and §°.!' The compressibility [Eq.
(4a)] is given in terms of the density variation; di=i—(#).
From Eq. (3) one sees that for a spin-polarized STM, i.e.,
P #0, the spin susceptibility may dominate, as the overall
prefactor can be an order of magnitude larger. This compari-
son is of course system dependent as charge and spin sus-
ceptibilities can vary greatly. Equation (3) has the important
consequence that in addition to the single-particle density of
states routinely extracted from STM experiments, also two-
particle correlations can be determined.

Note that in contrast to Eq. (2), the current noise in the
weak tunneling limit, which is given by the current-current
correlation function, leads to the well-known shot-noise re-
lation. The zero-frequency shot noise is proportional to the
current itself which goes as the tunneling amplitude squared
while Eq. (3) is proportional to |T|*. This seemingly contra-
dictory result is resolved by the fact that in general the com-
plete characterization of the fluctuations or noise of a signal
is not solely determined by a second-order moment, such as
a current-current correlation but by all higher moments as
well.'>!3 To obtain a similar result to Eq. (3) from the current
signal itself requires the choice of a higher-order moment,
i.e., the current-current-current-current correlation or kurtosis
of the current noise. Thus, the conductance fluctuations of a
tunneling current are related to the kurtosis.

Among the many possibilities, one could spatially resolve
the low-energy correlations near one or more Kondo impu-
rities, where the geometry of the nanocluster, as well as the
direct and indirect exchange processes between atoms are in
strong competition'* with the Kondo correlations. Here, we
present one intriguing application of this. We show that the
correlations around a single magnetic atom, the so-called
Kondo cloud, can be observed in such measurements. We
now turn to a calculation of the local susceptibilities [Egs.
(4a) and (4b)] for such a system.

The Kondo effect has been extensively studied both theo-
retically and experimentally,’> more recently by using an
STM to image single or multiple magnetic adatoms on a
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metallic surface.'®?! Experimentally, for the most part, the
focus has been on measuring the formation of the Abrikosov-
Suhl-Kondo resonance in the density of states while in the
Kondo regime. Theoretically, many other quantities have
been explored, such as the nonlocal spin correlations be-
tween the impurity and conduction electrons X (r,?)
:<§Z(r,t)3’fm (0)), which is typically used to study the Kondo
screening.®”*>2* The Kondo cloud could be explored by
measuring xxy (r,7) but the nonlocality would require a two-
probe setup: one to measure the impurity and one for the
bath. Currently, and in the foreseeable future, such a setup is
not feasible. In the following we show that the screening
length can be deduced from local measurements of only the
bath electrons.

To calculate the required bath correlation functions [Egs.
(4a) and (4b)], in the presence of magnetic impurities, we
used a numerically exact scheme, briefly outlined below.2 In
principle, this formalism allows one to calculate all physical
quantities of the impurities and the substrate. We believe this
is the ideal framework to apply to real experimental
systems.?2?32627 The general Hamiltonian of a noninteract-
ing substrate with n bands coupled to N-atomic impurities
with amplitude Vi including direct exchange J, ., be-
tween impurities is

a,as’

Sub_ E E (Gﬁg' M)bn kg-bn kot z 2 Eas

n ko K

+o
+7 2 E UY .8 Ca.vlcaxzcas3cax4

a—l S “
1 N
+§ E Ja’afsa-Sa,

a#a’

N
+EEE[Vﬁa’,as }Elka' as+HC] (5)

a=1 n Kk,o,s

where ¢! (c,,) is the electron creation (annihilation) operator
for an impurity, with a complete set of quantum numbers s.

Here éa is the total spin of an adatom, E, are the bare
energy levels, and Ufl_._s4 is the Coulomb interaction. In prin-
ciple, all of the above parameters, along with the dispersion
of the metal €, could be obtained from an ab initio calcu-
lation, e.g., density-functional theory. With respect to Hamil-
tonian (5), the generating functional, with action Sy, for the

entire system can be written as a functional integral over

Grassmann variables, including source terms A; and A,
for the bath electrons and each impurity; Z,

=[D[&,c]D[b,ble~5+. Because the host metal is assumed to
be noninteracting, i.e., Gaussian, the bath electrons can be
integrated out exactly, leading to a reduced generating func-

tional Z, ~ [D[c, c]e‘siff, with an effective action for the im-
purity sites. The propagator of the bath or any correlation
function can be obtained by suitable functional differentia-
tion with respect to the sources. In doing so, general corre-
lation functions of the system are expressed in terms of the
local impurity correlation functions. While there are a variety
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FIG. 1. (Color online) The zero-frequency nonlocal spin (top)
and charge (bottom) susceptibilities, for the single-impurity spin-3
symmetric Anderson model as a function of the distance from the
impurity site and for an inverse temperature of (kz7)~'=/8=200.

2
Here, }NL=[%] xnL- All other parameters are given in Table L.
(The gray-scale line shade corresponds to different on-site Coulomb

interactions U, decreasing from dark to light.)

of computational impurity solvers available, we used the nu-
merically exact continuous-time quantum Monte Carlo
method of Ref. 28 for the evaluation of the frequency-
dependent two-particle Green’s function of the impurity.

For simplicity and clarity, instead of the full Hamiltonian
(5), we take the model of a single-orbital adatom on a me-
tallic surface described by the symmetric single-impurity
spin-3 Anderson model,'* with an onsite interaction U and a
three-dimensional parabolic dispersion for the bath. We will
neglect the direct tunneling into the impurity. With this con-
tribution our results would be modified only for r=0. When
studying Kondo correlations, usually the nonlocal equal-time
spin-spin correlations between the impurity and the bath,
X;?L(r,t):(fz(r,t)ﬁfmp(O)) are considered. Here we instead
focus on the zero-frequency component of the spin and
charge correlations for different values of U. Figure 1 shows
that their spatial periodicity )\=’7Tk1_;l is the same as that of
Friedel or Ruderman-Kittel-Kasuya-Yoshida oscillations.?!
With increasing U, charge fluctuations of the impurity and
the corresponding correlations are suppressed as expected
while spin correlations are enhanced. Note that in contrast to
the equal times correlations,?* ferromagnetic and antiferro-
magnetic contributions appear in approximately equal mag-
nitudes. This shows that the impurity spin is screened dy-
namically, as higher-frequency components on a scale set by
the Kondo temperature Tk eliminate the ferromagnetic cor-
relations.

Although being of theoretical interest, measurements of
such nonlocal quantities is currently unfeasible. Alternatively
we propose to measure the local spin or charge correlations
of the bath through conductance fluctuations. Figure 2 proves
that a signature of the Kondo cloud also appears in these
local quantities of the bath, which appear in Egs. (4a) and
(4b). The spatial dependence of the zero-frequency compo-
nents is shown in the insets. The period of the oscillations of
both spin and charge is smaller compared to the nonlocal
quantities of Fig. 1 by a factor of 2, with a relative phase
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FIG. 2. (Color online) The insets show the local spin (top) and
charge (bottom) correlations, Egs. (4a) and (4b), for the single-
impurity spin-% symmetric Anderson model as a function of the
distance from the impurity site and for an inverse temperature of
(kgT)~'=B=200. The envelope of these susceptibilities for fixed
U=1 and different temperatures T, 8=(kgT)~", are also shown for
each. The horizontal axis has been rescaled by the Kondo length;
&k=hvg/ (kgTk). The deviations for the spin susceptibility at small
distances are purely numerical, coming from a high-energy fre-
quency cutoff. Here, fz[%]zx. (In the inset figure, the gray-
scale line shade corresponds to different on-site Coulomb interac-
tions U, decreasing from dark to light. While the main figure shows
the inverse temperature B increasing from light (high temperature)
to dark (low temperature) in gray scale.)
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shift of 7/2 between spin and charge. The figure clearly
shows that the envelopes of these oscillations show a nonal-
gebraic decay, which changes to a power law at r= &, and
ultimately, at finite temperature, the correlations are expo-
nentially cut off by the thermal length &y~ hvg/kgT. The
appearance of the thermal length can be seen for the largest
values of r in Fig. 2, as the power law changes over into an
exponential. At zero temperature the decay remains a power
law for r> &¢. The physical interpretation is that at zero
temperature the magnetic impurity is almost fully screened
by conduction electrons within &g, thus outside of this
length-scale correlations are weak and decay rapidly but
within &g correlations of the bath, mediated by the impurity,
remain nontrivial.

Figure 2 also shows a signature of the Kondo screening
appearing in the density-density correlations. Normally, for
Kondo systems, charge degrees of freedom are of little inter-
est since the physics of the Kondo effect is entirely in the
spin sector. Nonetheless these degrees of freedom remain
coupled. This is also consistent with Ref. 32, where the
Kondo length is shown to appear in the Friedel oscillations
of the density.

Finally it should be noted that, because we have neglected
interactions in the bath, there is an infinite phase coherence
length L, of the bath electrons. In any real system, L,
which itself is strongly temperature dependent, can be
of the same order as & (£éx=100 nm for adatom systems).
If L,<& the Kondo correlations are lost before the
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screening length is reached, resulting in an underscreened
impurity. In general, the detection of the Kondo cloud as
outlined here would necessitate systems with a higher Kondo
temperature (smaller &x) and lower operational temperatures
(larger Ly).

In conclusion, we have shown that the conductance fluc-
tuations of a tunneling current into an interacting system are
determined by the charge and spin susceptibilities of the sys-
tem. We have also shown that one application of this is to use
an STM to detect the Kondo screening cloud. We have fur-
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thermore developed a general method to exactly calculate
n-point correlations for experimentally relevant setups con-
sisting of multiple adatoms or correlated “sites.” Extension
of these results to finite frequency and multiple impurities
would allow one to study, for example, the singlet-triplet
excitations of two or more antiferromagnetically coupled
adatoms.
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